A Review of Thermal Energy Storage Systems with Salt Hydrate Phase Change Materials for Comfort Cooling

The 11th International Conference on Energy Storage

ROYAL INSTITUTE OF TECHNOLOGY "Effstock 2009: Thermal Energy Storage for Efficiency and Sustainability"

14-17 June 2009, Stockholm, Sweden

Justin Ning-Wei Chiu, Dr. Viktoria Martin, and Prof. Fredrik Setterwall

Department of Energy Technology Royal Institute of Technology (KTH) Stockholm, Sweden

Heat and Power Technology, Stockholm, Sweden

Table of Content

- Background
- Thermal Energy Storage System Performance
 - Phase Separation
 - Subcooling
 - Encapsulation
 - Heat Transfer Enhancement
 - Experimental and Numerical System Studies
- Conclusion

ROYAL INSTITUTE OF TECHNOLOGY

Background

- Latent heat thermal energy storage (LHTES) with phase change materials (PCMs) : high energy storage density and small temperature change.
 - District cooling network
 - → additional cooling power
- Chiller based system
 - → alleviate peak grid electricity
 - → lower marginal electricity cost
 - → Increase production efficiency

- Free Cooling storage
- → night time storage, daytime use

ROYAL INSTITUTE OF TECHNOLOGY

Methodology

- Salt hydrate based cold thermal energy storage systems for comfort cooling.
- Review of 100 papers focusing on enhancement of TES:
 - Phase Separation
 - Subcooling
 - Encapsulation
 - Heat Transfer Enhancement
 - Experimental and Numerical System Studies

ROYAL INSTITUTE OF TECHNOLOGY

Phase Change Materials

Table 1 Comparison of Organic with Inorganic PCMs

		Organic	Inorganic	Eutectic
HAP STITUTE OLOGY	Pros	 Low Cost (120 Euro/kWh) Self nucleating Chemically inert and stable No phase segregation Recyclable Available in large temperature range 	 Moderate cost (130 Euro/kWh) High volumetric storage density (180-300 MJ/m³) Higher thermal conductivity (0.6W/mK) Non flammable Low volume change 	 Sharp melting point Low volumetric storage density
	Cons	 Flammable Low thermal conductivity (0.2W/mK) Low volumetric storage density (90-200 MJ/m³) 	 Subcooling Phase segregation Corrosion of containment material 	• Limited availability

ROYAL INST OF TECHNO

Phase Change Materials

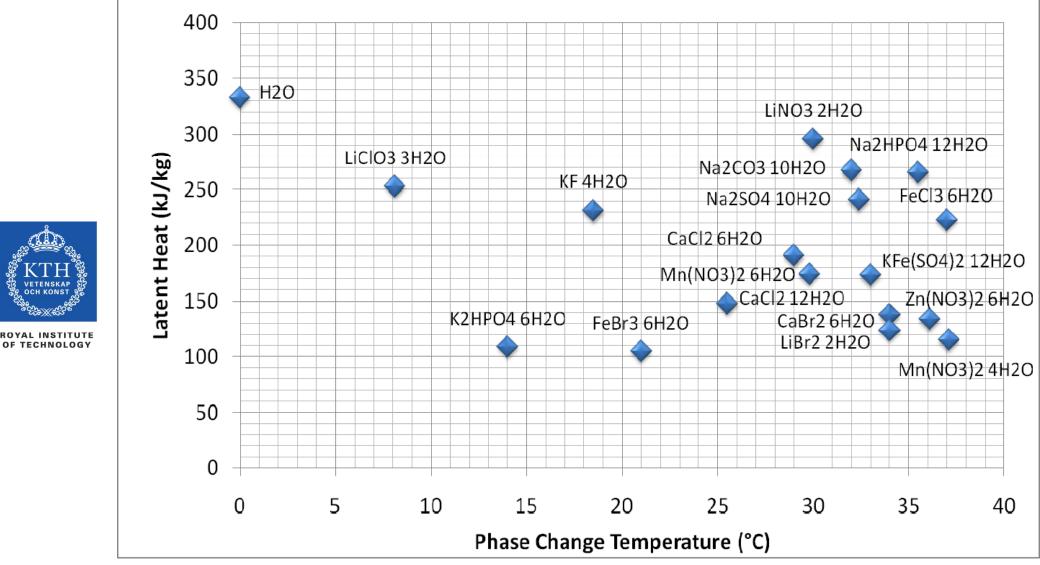
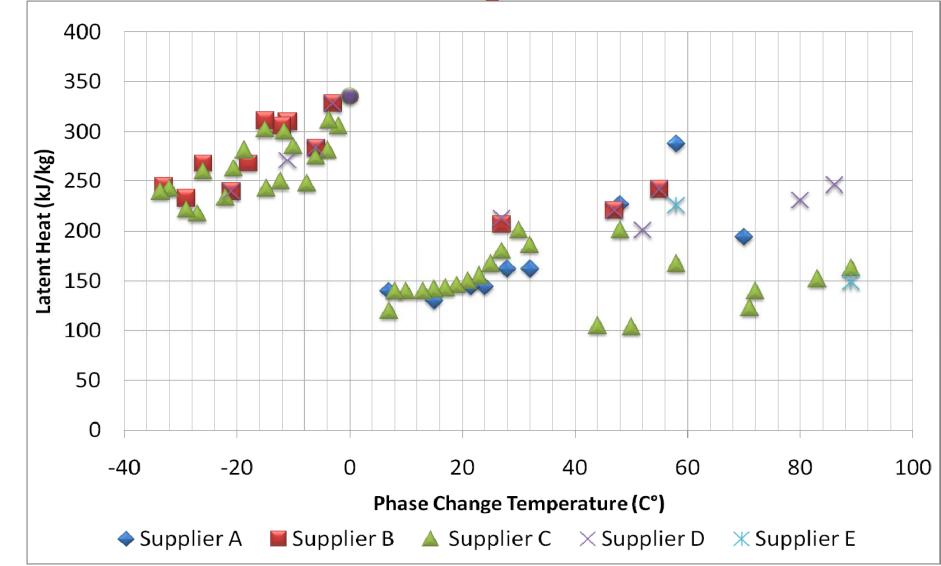



Figure 1 Analytical Grade Salt Hydrates

🗲) energi

Heat and Power Technology, Stockholm, Sweden

Phase Change Materials

Figure 2 Commercialized Salt Hydrate Products

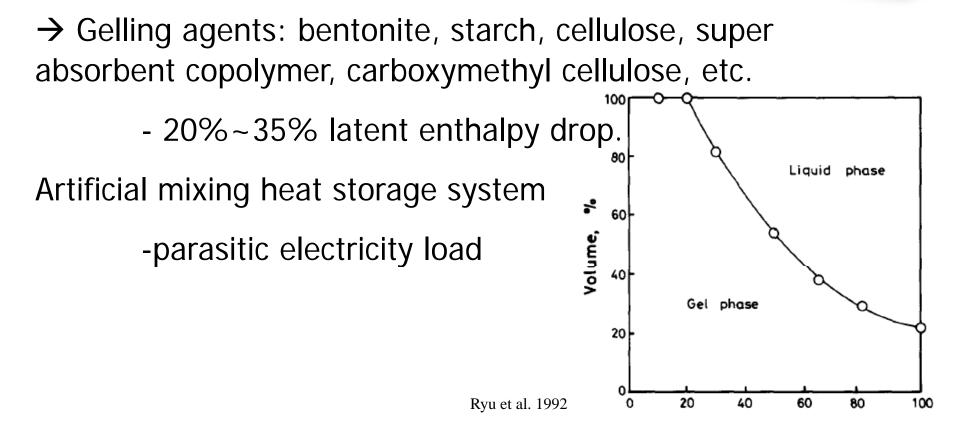
ROYAL INSTITUTE OF TECHNOLOGY

🗲) energi

Heat and Power Technology, Stockholm, Sweden

7

Thermal Energy Storage System Performance -Phase Separation

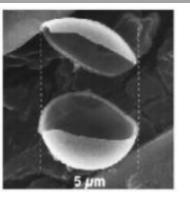

Incongruent Melting

🗲) energi

ROYAL INSTITUTE OF TECHNOLOGY

No. of Cycles

Thermal Energy Storage System Performance -Subcooling


 \rightarrow Cold finger, porous heat exchange surface, and nucleating agents: carbon nanofibers, copper, titanium oxide, potassium sulfate, borax, etc. Supercooling range of the thickened PCMs with the respective nucleating agents

PCM	Thickener	7 _m (°C)	Nucleating agent (size, μm)	Supercooling (°C)		
				w/o nucleator	w/nucleator	
Na ₂ SO ₄ ·10H ₂ O	SAP	32	Borax (20×50-200×250)	15-18	3 -4	
Na ₂ HPO ₄ ·12H ₂ O	SAP	36	Borax $(20 \times 50-200 \times 250)$ Carbon $(1.5-6.7)$ TiO ₂ $(2-200)$ Copper $(1.5-2.5)$ Aluminum $(8.5-20)$	20	$\begin{array}{rrrr} 6 & -9 \\ 0 & -1 \\ 0 & -1 \\ 0.5 -1 \\ 3 & -10 \end{array}$	
CH ₃ COONa·3H ₂ O	СМС	46	Na ₂ SO ₄ SrSO ₄ Carbon (1.5–6.7)	20	4 -6 0 -2 4 -7	
$Na_2S_2O_3 \cdot 5H_2O$	CMC	57	K ₂ SO ₄ Na ₂ P ₂ O ₇ ·10H ₂ O	30	$\begin{array}{ccc} 0 & -3 \\ 0 & -2 \end{array}$	Ryu et al. 1992
•Subcooling reduce	ed fro	m	20°C to 2°	°C, 2°C	c = hig	h efficiency
loss.						

ROYAL INSTITUTE **OF TECHNOLOGY**

BASF

ROYAL INSTITUTE OF TECHNOLOGY

Thermal Energy Storage SystemPerformance-Encapsulation

Serve as heat transfer surface, prevents PCM from reacting, and adds mechanical strength.

•Macro encapsulation: easy handling, but low IPF $H_{spherical capsules} > H_{cylindrical} > H_{plate type} > H_{tubular capsules}$

•Micro encapsulation: prevents phase separation, but has high production cost

•Bulk storage: no packaging cost and high storage density.

Thermal Energy Storage System Performance -Heat Transfer Enhancement

•Fins placed in the same direction as tubes for vertical tube setup: 90W/m²K and 250W/m²K

•Dispersion of aluminum and graphite

 \rightarrow 1.6X to 20X

ROYAL INSTITUTE OF TECHNOLOGY

•Impregnation of PCM into a graphite matrix

 \rightarrow 20X to 1000X

Today: organic compounds

→ Tomorrow: salt hydrates

Thermal Energy Storage System Performance

-Experimental and Numerical System Studies

•Space thickness, HTF entry temperature, encapsulation conductivity and solid phase PCM conductivity have significant influence on melting/ solidifying process.

- •Passive walls with PCM : better performance than masonry wall of 5X thickness.
- ROYAL INSTITUTE OF TECHNOLOGY
- •Case study in Saudi Arabia: 23% to 40% cooling power reduction.
- •Case study of office building in Stockholm: 5% to 30% reduction.
- •Peak cooling demand may be reduced by 40% to 90% with **proactive control** and weather forecasts.

Conclusions

- Techno-economical PCM systems: lower cost, higher power, and larger storage density
 - advanced material research: low subcooling, phase separation
 - system performance modeling, design optimization and experimental work
- Lack of accurate commercial PCM property→ discrepancies between design model and actual TES system.
- Move towards standardization of property measurement.
- Salt hydrate based TES seems to be one of the most promising technologies for integration in the built environment.

ROYAL INSTITUTE OF TECHNOLOGY

Acknowledgement

- Swedish Energy Agency for their financial support.
- Anneli Carlqvist and Prof. Björn Palm for their comments on the article.
- Bengt Uusitalo, Capital Cooling; Conny Ryytty, Energy Agency; Eva-Katrin Lindman, Fortum; Stig Högnäs, Vesam, Katrineholm (Kyl- och vent-konsult); Nils Julin, Climator, Skövde (PCMtillverkare); Fredrik Setterwall, Ecostorage Sweden for guiding the project.

OF TECHNOLOGY

14

ROYAL INSTITUTE OF TECHNOLOGY

Thank you

justin.chiu@energy.kth.se

Heat and Power Technology, Stockholm, Sweden