Sustainable Refrigeration and Heat Pump Technology

13-16 June 2010, Stockholm, Sweden

ROYAL INSTITUTE OF TECHNOLOGY

THERMAL ENERGY STORAGE FOR SUSTAINABLE FUTURE: IMPACT OF POWER ENHANCEMENT ON STORAGE PERFORMANCE

Justin Ning-Wei Chiu, Dr. Viktoria Martin

Department of Energy Technology Royal Institute of Technology (KTH) Stockholm, Sweden

Table of Content

Thermal Energy Storage (TES)
Phase Change Material Selection Criteria
Power Enhancing Technologies
Model
Results
Conclusion

ROYAL INSTITUTE

OF TECHNOLOGY

Thermal Energy Storage

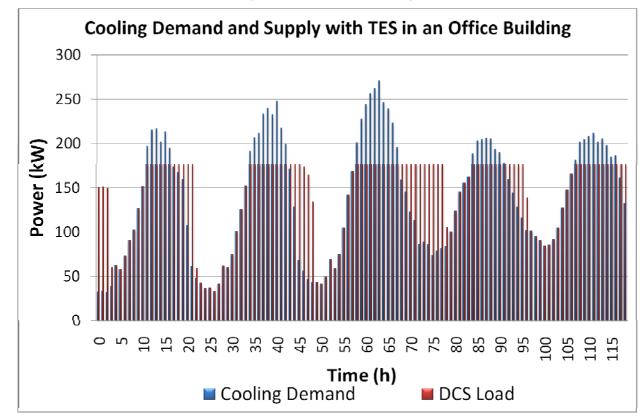
Storage: relocates thermal load in time

- Nominal power output \rightarrow nominal efficiency
- Load shift \rightarrow low tariff cost, high chiller efficiency
- Free cooling/waste heat, renewable sources→ sustainable future

- Phase Change Material: utilizes latent heat as storage
- Latent heat → high storage density
- Small temperature swing, suitable phase change temperature→ tailored energy system

PCM Selection Criteria

- □ Match working temperature → boundary conditions
- \Box Material stability \rightarrow life time
- □ System cost \rightarrow economics


 \Box Phase change properties \rightarrow power and capacity

- Inorganic PCMs: subcooling
 - ✤ several K
- and low thermal conductivity
 - ✤ 0.2~0.7 W/m/K

Power Requirement

• Concerns in meeting fluctuating load demand

Aim for power enhancement

ROYAL INSTITUTE OF TECHNOLOGY

Power Enhancing Technologies

Heat exchanger surface extension

- Fins
- Encapsulations
- Metallic structures
- ➢ 40-70W/m²K

- Thermal conductivity improvement
 - Metallic particles
 - Foams and matrices impregnation
 - ➤ up to 800W/m²K
- Study the impact of power enhancement on energy storage performance

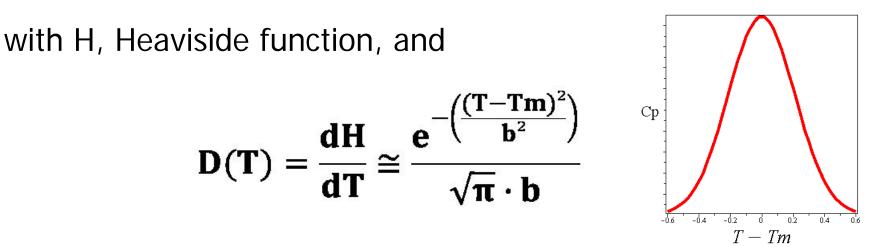
Model

- Gelled salt hydrate
- Isotropic properties
- Symmetric model

- Adiabatic
- Equal distant fins and tubes
- Enthalpy method

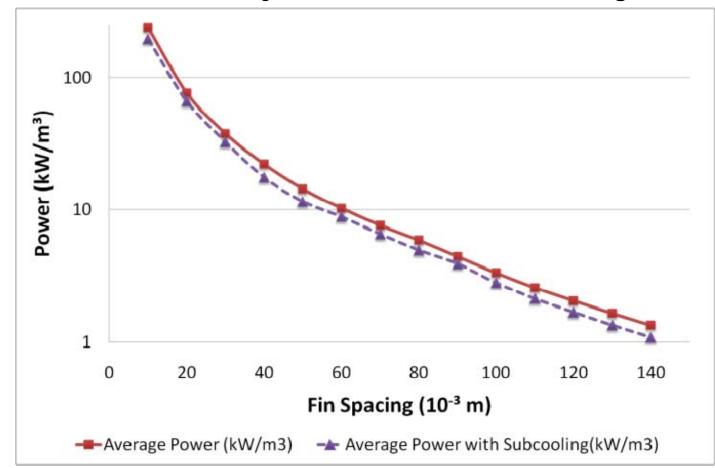
$$Cp(T) = \begin{cases} Cp_{sol} \text{ if } T < Tm - dT \\ \frac{L(T)}{\Delta T} \text{ if } T \in [Tm - dT, Tm + dT] \\ Cp_{liq} \text{ if } T > Tm + dT \end{cases}$$

ROYAL INSTITUTE OF TECHNOLOGY


Model

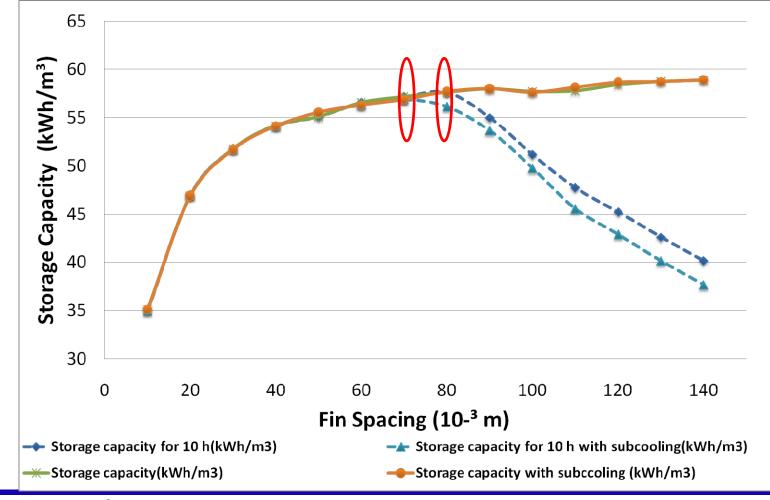
Cp is thus expressed as

 $Cp(T) = H(Tm - T) \cdot Cp_{sol} + D(T) \cdot L + H(T - Tm) \cdot Cp_{liq}$


ROYAL INSTITUTE OF TECHNOLOGY

parameters are chosen to account for 1K phase change temperature range with latent heat peaking at phase change point

- Power decreases exponentially as fin spacing widens
- Power is reduced by 16% with 1K subcooling



ROYAL INSTITUTE OF TECHNOLOGY

) energi

• For 10 h charging, storage is not fully utilized for fins spaced 80mm apart (w/o subcooling), and 70mm (w subcooling)

ROYAL INSTITUTE OF TECHNOLOGY

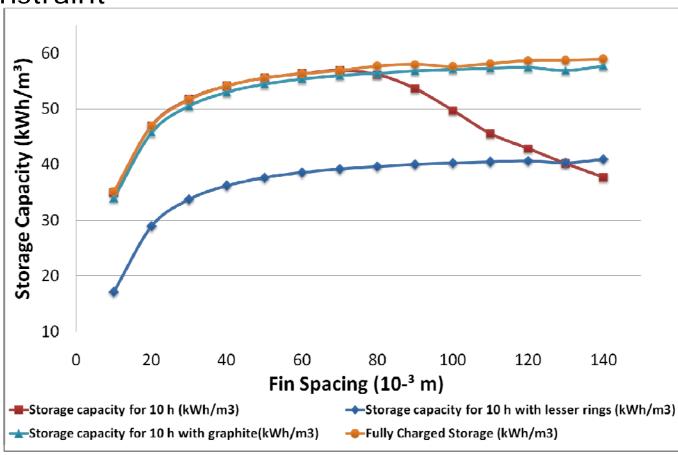
- Ice Packing Factor (IPF) → storage density
- Fin and Tube spacing→ solidification/melting time
 → power
- Fin and Tube spacing $\leftarrow \rightarrow$ IPF
- Storage density is a tradeoff to solidification/melting time and storable/extractable power.

_	·		·				· · · · · · · · · · · · · · · · · · ·			·			·	· · · · · · · · · · · · · · · · · · ·	/
F	Fin and Tube Spacing		<u>ا</u> ا	1	1	1						1			1
	(mm)	10	20	30	40	50	60	70	80	90	100	110	120	130	140
	IPF	59%	78%	86%	90%	93%	94%	95%	96%	96%	97%	97%	98%	98%	98%
S	Solidification Time (hr)	0.18	0.71	1.6	3.1	4.8	6.4	8.7	11	14	18	21	25	30	35
	<u>.</u>		/		<u> </u>										


OF TECHNOLOGY

🗲) energi

• Enhancement with 2% volume graphite or 30% lesser rings leads to 20 folds power increase

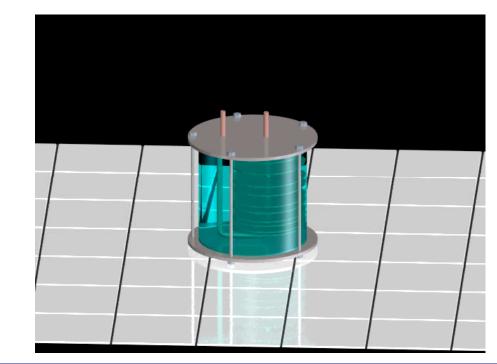


🗲) energi

 Thermal property enhanced PCM provides high power and also overcomes the charge/ discharge time constraint

Conclusion

- 1K subcooling contributes to 16% of power decrease, R&D for materials with low subcooling is needed
- Physical storage capacity depends on IPF
- Real storage capacity depends on heat exchange rate due to energy source availability
- For each application, there is an optimum design for fully utilizing storage capacity (70/80 mm in the studied case)
- Application of TES in an energy system is yet to be looked into from a holistic approach, namely system analysis and the techno-economical cost



Ongoing Work

- Thermal Energy Storage Rig
 - Obtain experience with PCM and storage concept
 - Validate the theoretical study
 - Provide background study for 10~15kWh storage prototype

ROYAL INSTITUTE OF TECHNOLOGY

Acknowledgement

- Swedish Energy Agency for the financial support
- Co-supervisor Prof. Björn Palm for his guidance

ROYAL INSTITUTE OF TECHNOLOGY Reference Group: Bengt Uusitalo, Capital Cooling; Nils Julin, Climator AB; Fredrik Setterwall, Ecostorage Sweden AB; Eva-Katrin Lindman, Fortum Värme AB; Stig Högnäs, Vesam AB for their expertise

ROYAL INSTITUTE OF TECHNOLOGY

Thank you

justin.chiu@energy.kth.se

