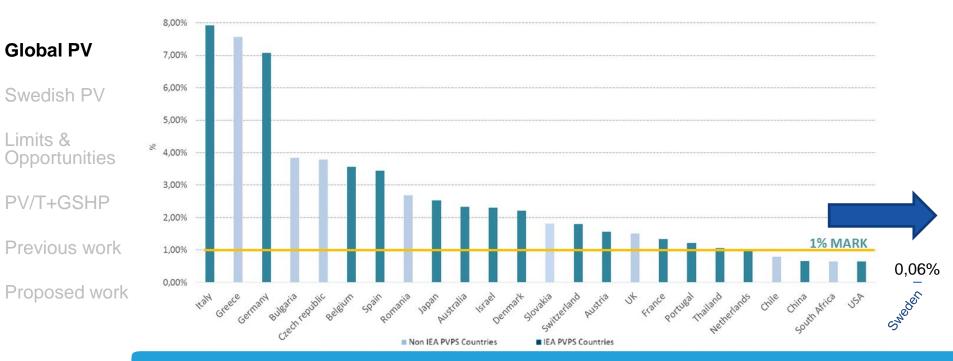



Motivations for thermal storage in support of solar PV in Sweden

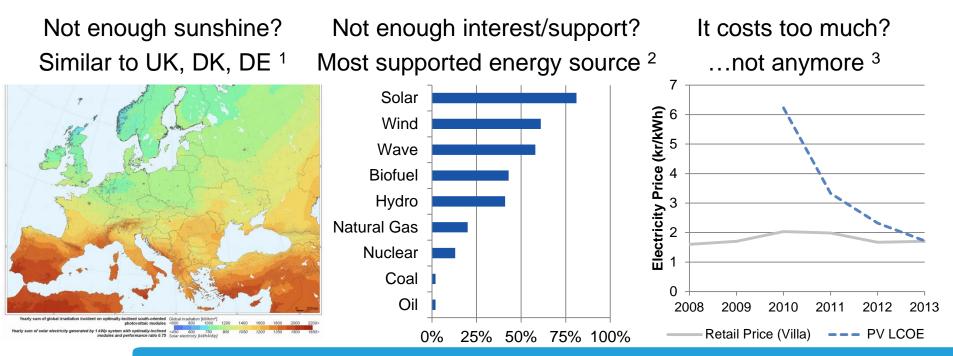
Nelson Sommerfeldt, PhD Candidate at KTH Energy Technology nelson.sommerfeldt@energy.kth.se

Where does PV into the energy system(s)?


Cumulative global installations by region

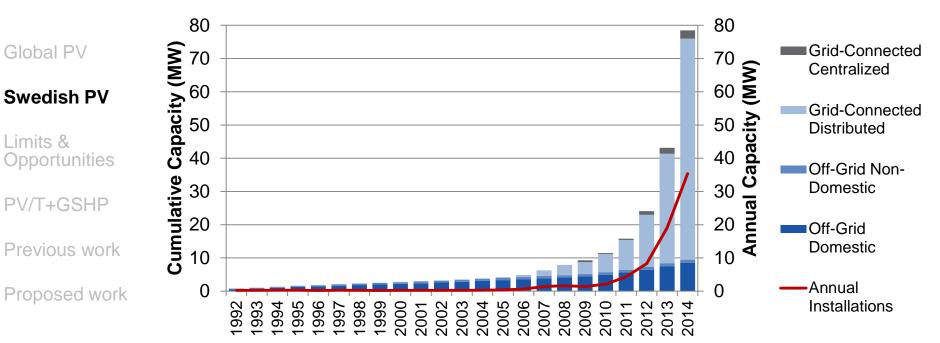
	180000															
Global PV	160000															
Swedish PV	140000							т	HE AMERICA	s						
	120000															
Limits &	g 100000				e na las de ses las na las na las da las na da na s	a na ma na na ha ha na na na na na na na na			SIA PACIFIC							
Opportunities	100000 W 80000	MIDDLE EAST AND AFRICA														
PV/T+GSHP	60000								UROPE							
Previous work	40000															
	20000															
Proposed work	0															
	2	000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
					Euro	pe	■ Middle East & Africa		Asia Pacific		America					

Source: IEA-PVPS (2015) Snapshot of Global PV Markets (T1-26:2015)


PV as a percent of electricity production

Source: IEA-PVPS (2015) Snapshot of Global PV Markets (T1-26:2015)

So...why isn't there any PV in Sweden?



1) PVGIS © European Union, 2001-2012

2) Hedberg P. and Holmberg S. (2014) Svenska folkets åsikter om olika energikällor 1999-2013. SOM-Institutet, Gothenburg.
3) Svensk Energi, Lindahl J. (IEA-PVPS), author's calculations

Installed capacity in Sweden

Source: Lindahl J. (2015) Swedish Summary of IEA-PVPS National Survey Report of PV Power Applications in Sweden 2014. IEA, Paris.

Government policy towards PV

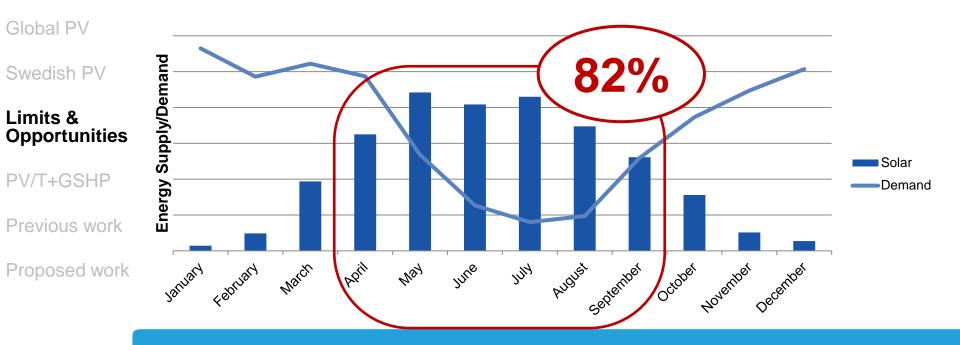
Global PV

Swedish PV

Limits & Opportunities

PV/T+GSHP

Previous work


Proposed work

- Direct support
 - Capital subsidy 20%*
 - Green certificate market (elcertifikat) open market pricing
 - Microproducers 0.6 kr/kWh feed-in bonus
- Indirect support
 - Installation labor cost qualifies for 50% tax rebate (ROT-avdrag)
 - 30% deduction on loan interest
- Lack of support
 - Microproducers must pay VAT on sold electricity
 - New proposal that plants >144 kW_p must pay energy tax (~0.3 kr/kWh)

*was 35%, but the entire 2014-2016 budget was spent by October 2014. The program was refunded and subsidy reduced to 20%, but the queue is so long the rate is effectively 0%

A fundamental problem remains...

Potential storage solutions

Global PV		Strengths	Weaknesses				
Swedish PV Limits & Opportunities	Batteries	High efficiency (80-90%) Returns electricity	High cost Not for seasonal cycling				
PV/T+GSHP Previous work	Hydrogen	Long storage times Multiple uses	Infrastructure demands Difficult to handle				
Proposed work	Thermal	Low cost Daily and seasonal cycling	Application dependent				

Previous work – Solar PV + storage

Global PV

Swedish PV

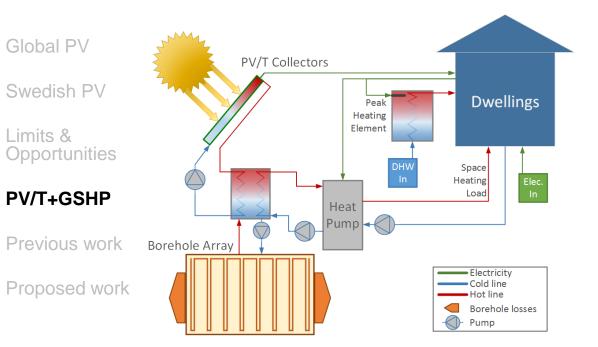
Limits & Opportunities

PV/T+GSHP

Previous work

Proposed work

Comparing battery and thermal storage with solar PV


- Single family house equiped with GSHP
- Lead acid batteries and electric resistance hot water tank
- Daily storage cycling
- For each system increasing self-consumption from 58% to 88%
 - LCOE of batteries = 0.4 €/kWh
 - LCOE of thermal = 0.2 €/kWh
 - LCOE of reference = 0.16 €/kWh

Problem: Displacing COP of 3 with a COP of 1

Thygesen R. and Karlsson B. (2014) Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption. Solar Energy, 103, pp.19-27.

Proposed concept – PV/T + GSHP

- Mutually beneficial
 - Requires low-temp strategy
 - Cool PV and warm boreholes
- Potential performance gains
 - 4-6% increased PV gen.
 - 20-35% less HP demand
 - 80-90% storage efficiency
- May only partially solve the demand/supply imbalance

Previous work – Seasonal thermal storage

Global PV

Swedish PV

Limits & Opportunities

PV/T+GSHP

Previous work

Proposed work

Drake Landing - Okotos, Alberta, Canada

- Original design
 - Solar thermal stored in 144 borehole field w/ 2.25m spacing
 - 45-70 °C mean store temp, 98% solar fraction, 40% efficiency
- Recalculated with low-temperature strategy with heat pump
 - ¹/₄ collector area, 4x BTES volume (4.5m spacing)
 - 10-16 °C mean store temp, 78% solar fraction, 86% efficiency
 - SCOP of 4.5

Chapuis S. and Bernier M. (2009) Seasonal storage of solar energy in borehole heat exchangers. 11th International IBPSA Conference, Glasgow.

Previous work – PV/T + GSHP

Global PV

Swedish PV

Limits & Opportunities

PV/T+GSHP

Previous work

Proposed work

Single family house - Frankfurt, Germany

- Ground source boosted by PV/T (when advantageous)
 - Single borehole which turned out to be undersized
- Measured PV output increase of 4%
- Measured GSHP performance not possible
 - Calculated SCOP increase of 0.36-0.56 with undersizing
 - Equal to 15% annual electricity savings

Bertram E., Glembin J., Rockendorf G. (2012) Unglazed PVT collectors as additional heat source in heat pump systems with borehole heat exchanger. Energy Procedia, 30, pp.414-23.

Previous work – PV/T + GSHP

Global PV

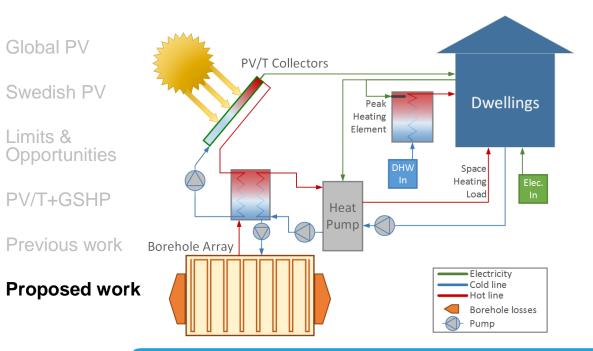
Swedish PV

Limits & Opportunities

PV/T+GSHP

Previous work

Proposed work


Multi-family, low-exergy house - Zurich, Switzerland

- Design description of building under construction
- PV/T actively cooled with boreholes
- Calculated PV/T results
 - 12-14% increase in electrical output
 - 65% total energy efficiency (15% el, 40% th)
- Calculated GSHP results
 - SCOP of 7.9
- Holistic solution could limit applicability to non-optimized buildings

Meggers F., Ritter V., Goffin P., Baetschmann M., Leibundgut H. (2012) Low exergy building systems implementation. Energy, 41, pp.48-55.

Proposed concept – PV/T + GSHP

Effsys expand proposal

- Identify barriers and opportunities
- Measured data analysis
- TRNSYS model development
- Control strategy optimization

Student project

• PV/T cost reduction

Source: http://www.allbatteries.com.ph/2013/10/my-second-post/