

Bore field Sizing with reference to the starting time. Optimum Borehole Spacing.

Optimum BH Spacing

Objective

Develop the methodology for L calculation during the 1st year of operation

Application: Study of BH Spacing on L Calculation

in a quasi-balanced thermal system

Borehole (BH) sizing

INVOLVED FACTORS

- Energy Demand
- Temperature Constrainst in the HP
- Drilling Area
- > Cost

D, inactive part

H, active borehole length

DESIGN PARAMETERS

- ☐ L: Total Bore field Length
- ☐ nb: Number of BHs
- ☐ H: Active BH Length
- ☐ B: Spacing BH-to-BH
- \Box r_b:BH radius

Methodology

1. ASHRAE's equation

$$L = \frac{q_h \cdot R_b + q_y \cdot R_{10y} + q_m \cdot R_{1m} + q_h \cdot R_{6h}}{T_m - \left(T_g + T_p\right)}$$

Reference: Philippe M and Bernier M. 2010. Sizing Calculation SpreadSheet Vertical Geothermal Borefield

2. Adapt ASHRAE's equation of L calculation for the 1st year of operation

Methodology

4. Adapt Tp equation

$$T_{p,i} = \frac{q_i}{2\pi k_s} \times \left[g_{n,i} \left(\frac{t}{t_s}, \frac{B}{H}, BH \text{ geometry} \right) - g_{1,i} \left(\frac{t}{t_s} \right) \right]$$

Example:4th month of operation

Application of the Methodology Input Parameters

Ground Load profile

Application of the Methodology BH Spacing

B varies from 6 to 3 m

Borehole Spacing [m]

• Lheating ○ Lcooling ■ Tpheating □ Tpcooling

Conclusion

- Methodology to calculate L at the end of each month troughout the 1st year of operation
- The methodology is applied to a particular cases
- BH Spacing
 - L is calcualted for different B.
 - It is possible to optimize B to have a minimum L.

8