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ASHRAE SIZING METHOD
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First appeared in the 1995 ASHRAE Handbook



ASHRAE SIZING METHOD
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Schematic representation 
(Effective ground thermal resistances are not in parallel)



ASHRAE SIZING METHOD

6Obtained using the cylindrical heat source analytical solution 
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T TTT

2-D heat transfer and borehole thermal influence not accounted for

ASHRAE SIZING METHOD



ASHRAE SIZING METHOD
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𝑇𝑇𝑝𝑝 is introduce to account for thermal
interference

…but

 Table for Tp in the Handbook is incomplete
 Limited to a certain number of geometries
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ASHRAE SIZING METHOD–PROPOSED MODIFICATIONS (1)

𝐹𝐹𝑠𝑠𝑠𝑠 has been eliminated
𝑇𝑇𝑝𝑝 is calculated based on g-functions

Proposed by Bernier et al. (2006)
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𝐿𝐿𝑖𝑖 =
𝑞𝑞ℎ,𝑖𝑖 � 𝑅𝑅𝑏𝑏 + �𝑞𝑞𝑝𝑝𝑝𝑝,𝑖𝑖 � 𝑅𝑅𝑝𝑝𝑝𝑝,𝑖𝑖 + 𝑞𝑞𝑠𝑠𝑝𝑝,𝑖𝑖 � 𝑅𝑅𝑠𝑠𝑝𝑝 + 𝑞𝑞ℎ,𝑖𝑖 � 𝑅𝑅ℎ

𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑔𝑔 + 𝑇𝑇𝑝𝑝,𝑖𝑖

ASHRAE SIZING METHOD–PROPOSED MODIFICATIONS (2)

Modifications to account for the first year of operation 
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 converges rapidly after 3 to 4 iterations.
 The method is applicable to all kind of bore field configurations

 Iteration procedure is required as 𝐿𝐿 is unknown a priori
 g-functions are determined “On fly”
 No interpolation for 𝐵𝐵/𝐻𝐻
 No correction factors for 𝑟𝑟𝑏𝑏/𝐻𝐻

ASHRAE SIZING METHOD–PROPOSED MODIFICATIONS (3)



EXEMPLE
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Heating and cooling of a building of a building and 3 nearby 
greenhouses



DETERMINATION OF THE GROUND LOADS

13

monthly 
building 
cooling 
load 

peak 
building 
cooling 
load 

monthly 
building + 
greenhouse 
heating load

peak 
building + 
greenhouse 
heating 
load

peak 
hourly 
ground 
cooling 
load

peak hourly 
ground heating 
load (with 
greenhouses)

monthly 
ground load 
(with 
greenhouses)

kWh kW kWh kW kW kW kW
january 0.0 0.0 112843.5 219.8 0.0 164.9 113.8
february 0.0 0.0 105516.0 219.8 0.0 164.9 117.8
march 0.0 0.0 48361.5 219.8 0.0 164.9 48.8
april 0.0 0.0 20517.0 219.8 0.0 164.9 21.4
may 14655.0 87.9 2931.0 29.3 -109.9 22.0 -21.7
june 23448.0 131.9 0.0 0.0 -164.9 0.0 -40.7
july 29310.0 131.9 0.0 0.0 -164.9 0.0 -49.2
august 26379.0 131.9 0.0 0.0 -164.9 0.0 -44.3
september 23448.0 102.6 2931.0 29.3 -128.2 22.0 -37.7
october 0.0 0.0 23448.0 219.8 0.0 164.9 23.6
november 0.0 0.0 63016.5 219.8 0.0 164.9 65.6
december 0.0 0.0 106981.5 219.8 0.0 164.9 107.8

Totals 117240 486546
annual ground imbalance (kW)

24.93



DETERMINATION OF L
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24.9 kW of thermal imbalance causes an 
“equivalent” 3.5 oC ground temperature 
decrease after 5 years

Too long !



SOLAR INJECTION
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What if the 24.9 kW of ground thermal imbalance was compensated 
with solar energy with a double U-tube with 2 independent circuits



LENGTH WITH SOLAR INJECTION
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Without solar injection

With solar injection
36%



OTHER PROPOSED METHOD
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Field restriction: 
25 boreholes

Borehole depth = 146 m

Total length = 3650 m
(≅ 62% of the length 
calculated without 
considering solar injection)

The goal: Trap heat in the 
middle to use it for heating

3 x 100 kW w-to-w HP
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THERMAL RESPONSE FACTORS
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Also known as “g-function”



THERMAL RESPONSE FACTORS
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http://www.engineeringtoolbox.com

Similar in concept to the Moody diagram 



THERMAL RESPONSE FACTORS
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Gives the borehole wall temperature, Tb , as a function of time 

Curve shown is only valid for a particular geometry and ground temperature



DEFINITIONS
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Eskilson determined that for a 
given bore field geometry and for 
deep boreholes, the thermal 
response of a bore field depends
on 3 non-dimensional parameters:

B/H

t/ts (ts=H2/9αg)

rb/H

D

H

Tg 

kg 

αg 

B

rb 

Tb 

D/H 
There is actually a fourth ND parameter



DEFINITIONS
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kg 



FOUR REGIONS
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Borehole thermal interaction

Radial (1-D) 
heat transfer

“Steady-
state”

t > ts/10 : 2-D heat transfer

1           2          3          4



REGION I : 1-D (RADIAL) HEAT TRANSFER
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-Temperature is uniform along the height; it 
varies only in the radial direction

-Independent of borehole spacing

1-D (radial) 
heat transfer



REGION II : BOREHOLE THERMAL INTERACTION
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• Boreholes will start to interfere with each
other after a few months of operation.

• Center boreholes will be more affected.

Borehole 
thermal
interaction

Decreasing
spacing



REGION III: START OF 2-D HEAT TRANSFER
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Borehole thermal 
interaction

t > ts/10 :
2-D heat transfer

T TTT

• 2-D heat transfer (radial and axial). 
“Ellipsoid” temperature profile.

• Borehole thermal interaction continues.



REGION IV : STEADY-STATE HEAT TRANSFER
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“Steady-state”

Tb = cte



SHORT BOREHOLES  
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6×4 bore field with H = 5 m, B = 1 m, and rb = 0.05 m

D

H



DETERMINATION OF G-FUNCTIONS
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Numerically 

Analytically using the Finite Line 
Source solution (see Cimmino 
and Bernier, 2014) 



3 boundary conditions at the borehole walls are considered:

•BC-I :

•Uniform heat extraction rate

•Heat extraction rate equal for all boreholes

•BC-II :

•Uniform heat extraction rates

•Average borehole wall temperature equal for all boreholes

•BC-III :

•Uniform borehole wall temperature

•Borehole wall temperature equal for all boreholes

CALCULATION OF THERMAL RESPONSE FACTORS
BOUNDARY CONDITIONS AT THE BOREHOLE WALL
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g-functions are compared

to numerical g-functions

obtained using Eskilson’s

model.

CALCULATION OF THERMAL RESPONSE FACTORS
RESULTS (G-FUNCTIONS)
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PRE-PROCESSOR OF G-FUNCTIONS
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 For a single borehole:

EXPERIMENTAL DETERMINATION OF G-FUNCTIONS
SCALE REDUCTION

8 years 800 years 150 m borehole

34



 For a single borehole:

EXPERIMENTAL DETERMINATION OF G-FUNCTIONS
SCALE REDUCTION

90 min 1 week 40 cm borehole
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EXPERIMENTAL DETERMINATION OF G-FUNCTIONS
EXPERIMENTAL SET-UP (DIAGRAMS)
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EXPERIMENTAL DETERMINATION OF G-FUNCTIONS
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EXPERIMENTAL DETERMINATION OF G-FUNCTIONS
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THERMAL CAPACITY IN BOREHOLES
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THERMAL CAPACITY IN BOREHOLES
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UPCOMING EXPERIMENTAL WORK ON TRANSIENT
HEAT TRANSFER IN BOREHOLES
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FREEZING OF GEOTHERMAL BOREHOLES
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FREEZING OF GEOTHERMAL BOREHOLES
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FREEZING OF GEOTHERMAL BOREHOLES
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FREEZING OF GEOTHERMAL BOREHOLES

time (h)
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Tout-dry soil-prosity 0.4

Tout-saturated soil-prosity 0.4

Temperature

Can reduce 
borehole length by 
38% in low k 
grounds
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Without sand ring
With sand ring

October 1st



BOREHOLE THERMAL ENERGY STORAGE

Source : dlsc.ca

Drake Landing Solar Community
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BOREHOLE THERMAL ENERGY STORAGE
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DLSC –CURRENT CONDITIONS
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DLSC – MEASUREMENTS
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Solar fraction of 95% in year 5

DLSC – CURRENT SYSTEM
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PROPOSAL : SIMULTANEOUS CHARGE/DISCHARGE

52



• Short boreholes

• Surface effects become important

• Need to model borehole is series

• Horizontal piping becomes important

• Can we produce these boreholes in the factory 
(like sausages !) 

RESEARCH NEEDS
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• Modeling of borehole fields with arbitrary geometry 

including boreholes in series has to go mainstream in 

general simulation program (TRNSYS, EnergyPlus …)

RESEARCH NEEDS
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• Good experimental data over a number of years to 

validate long-term modelling

• Thermal capacity effects of the fluid in the borehole 

and in the building loop have to be properly accounted 

in energy simulations and in sizing.

RESEARCH NEEDS

55
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