Skip to main content

Energy and Industrial Process Systems Engineering

How can solar and wind resources be most efficiently employed at large scale to provide electricity to cities and industry? What technologies will be critical for matching energy supply to end use, and for enabling zero or negative CO2 emissions?

Photo: Kenueone on Pixabay

Keywords: large-scale PV/CSP/wind power plants including energy storage, supercritical CO2 cycles, green hydrogen, electrolyzers, CO2 storage.

Research projects about centralized energy systems

Circular Techno-Economic Analysis of Energy Storage– IEA Annex Co-coordination

Nov 23, 2023

The goal of this project is to facilitate stakeholders in characterizing the technical performance and in evaluating the economic feasibility of any energy storage technology based energy system, such as for heating/cooling, renewable energy and energy efficiency increase.

DETECTIVE – Development of a Novel Tube-Bundle-Cavity Linear Receiver for CSP Applications

Mar 08, 2024

DETECTIVE aims at enhancing the efficiency of Parabolic Trough Collectors (PTCs) acting on their current optical behavior with an innovative approach, introducing a novel tubular receiver to increase solar absorption as well as reduce the reflection and radiation losses, by promoting tube-bundle and cavity concepts. Such improvement would ensure a cascade effect enabling lower costs and reduce area footprint for linear concentrated solar power (CSP) and thermal (CST) plants, and leading to reduced capital investment and impact, facilitating the installation also in industrial sites.

FLEXnCONFU: Flexiblize Combined Cycle Power Plants through Power To-X Solutions using Non-Conventional Fuels

Nov 23, 2023

The main goal of the FLEXnCONFU project is to develop and demonstrate innovative, economically viable and replicable power-to-X-to-power (P2X2P) solutions in combined cycle (CC) power plants. The objective is to design and implement integrated power plant layouts that can increase the operational flexibility in order to respond to the electricity demand.

HYBRIDplus: Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles

Mar 08, 2024

HYBRIDplus aims to pioneer the next generation of CSP with an advanced high-density and high-temperature thermal energy storage (TES) system capable of providing a high degree of dispatchability at a low cost and with a much lower environmental burden than the State of the Art. This thermal storage is based on the Phase Change Material (PCM) technology in a cascade configuration that can reproduce the effect of a thermocline and integrates recycled metal wool in its nucleus. This enables hybridization with PV by acting as an electric heater transforming non-dispatchable renewable electricity into thermal stored energy ready to be dispatched when needed. HYBRIDplus proposes a novel concept to hybridize PV+Cascade PCM-TES with CSP configuration based on a high-temperature supercritical CO2 cycle working at 600 ºC. This new plant is called to form the backbone of the next-generation energy system thanks to higher efficiency and lower LCOE than state-of-the-art technology.

POWDER2POWER (P2P) – MW-scale fluidized particle-driven CSP prototype demonstration

Mar 08, 2024

P2P project aims to demonstrate at the MW-scale (TRL7) the operation of an innovative, cost effective and more reliable complete fluidized particle-driven Concentrated Solar Technology that can be applied for both power and industrial heat production. The prototype to be developed and tested is based on the modification and the improvement of an experimental loop built in the framework of the previous H2020 project Next-CSP. It will include all the components of a commercial plant, a multi-tube fluidized bed solar receiver (2 MWth), an electricity-driven particle superheater (300 kW), a hot store, a particle-to-working fluid crossflow fluidized bed heat exchanger (2 MWth), a turbine (hybrid Brayton cycle gas turbine, 1.2 MWe), a cold store and a vertical particle transport system (~100 m). The addition of an electricity-driven particle superheater will enable to validate a hybridized PV-CSP system working at 750°C that is expected to result in electricity cost reduction and efficiency improvement with respect to state-of-the-art.

RIHOND - Renewable Industrial Heat On Demand

Mar 08, 2024

The aim of this project is to design, assess and develop an innovative technical cost-effective solutions for integrated power-to-heat and thermal energy storage systems to satisfy the heat demand of the hard to abate industrial sector. The final goal of the project is to provide design recommendations for Kyoto Group’s next generation thermal energy storage and power-to-heat solution.

SCO2OP-TES – sCO2 Operating Pumped Thermal Energy Storage for grid/industry cooperation

Mar 08, 2024

SCO2OP-TES project aims to develop and validate up to TRL5, in UNIGE lab hosted in Tirreno Power (TP) Vado Ligure Combined Cycle power plant (CCGT), the next generation of Power-to-Heat-to-Power (P2H2P) energy storage solutions. SCO2OP-TES solution is able to guarantee affordable long duration (>10hrs) and large scale energy storage (multi MW/MWh) to facilitate bulky RES integration in EU energy systems as well as to facilitate large scale integration of RES and to convert traditional power plants (CCGT, CHP) – both standalone and those in industrial parks - into flexible renewable energy plants. This will be crucial particularly in a future scenario where their role will be more and more different and industrial process will be more and more electrified.

SHARP-SCO2 Solar Hybrid Air-sCO2 Power Plants

Mar 08, 2024

SHARP-sCO2 addresses key technological challenges to enable the development of a new generation of highly efficient and flexible CSP plants. Keeping on working with CSP-sCO2 power cycles and investigating how to exploit air as operating fluid, SHARP-sCO2 will develop and validate novel enabling technologies in EU top level labs. SHARP-sCO2 will attain high temperatures and cycle efficiency, while guaranteeing reliable and flexible operation. Introducing a smart hybridization with PV by means of an innovative electric heaters, SHARP-sCO2 will maximize sCO2 operation and remuneration, exploiting PV affordability while counting on the unique energy storage capabilities of CSP.

SUSHEAT Smart Integration of Waste and Renewable Energy for Sustainable Heat Upgrade in the Industry

Mar 08, 2024

SUSHEAT faces the main technological challenges to address the development of the key components for a new generation of highly efficient industrial heat upgrade systems fed by Renewable Energy Sources (RES) and waste heat recuperation. SUSHEAT technologies will explore renewable-based flexible and reliable heating solutions to power industrial processes. This will enable industry to transition away from polluting carbon-intensive fuels that dominate the energy mix. New and existing AI-assisted systems will be explored for optimal heat harvest, conversion and upgrade, and storage.

SolarSCO2OL

Nov 23, 2023

SOLAR based sCO2 Operating Low-cost plants.

USES4HEAT – Underground Large Scale Seasonal Energy Storage for Decarbonized and Reliable Heat

Mar 08, 2024

USES4HEAT aims to demonstrate innovative, large scale, seasonal thermal energy storage (TES) solutions enabling a future decarbonized and reliable heating supply. USES4HEAT demonstrates, at TRL8 and for a one year test campaign, two innovative, cost-effective, large scale, seasonal underground TES (UTES) units (specifically, aquifer TES, ATES, and high temperature borehole TES, BTES) to maximize the availability and resilience of heating supply whilst reducing energy losses and environmental impact. USES4HEAT seeks to demonstrate the TES units as fully integrated units in commercial large-scale district heating networks (DHN) as well as integrating industrial waste heat recovery and fulfilling industrial thermal demand. In doing so, USES4HEAT also demonstrates six innovative key enabling components/technologies and their integration with seasonal TES: advanced ATES drilling equipment and remotely controlled machines halving drilling times, innovative layered BTES collectors plastic piping materials ensuring elevated performance at high temperature (95°C), innovative groundwater heat pump at high temperature using low global warming potential fluids, enhanced hybrid photovoltaic-thermal (PVT) solar panels integrated with UTES boosting sector coupling, concentrated solar thermal collectors fully integrated with large-scale seasonal UTES maximizing the exploitation of solar availability and diversifying the thermal energy sources, AI, big-data analytics and cloud based intelligent predictive energy management software and predictive operation and maintenance (O&M) tools for optimized integrated system operation.

eLITHE – Electrification of ceramic industries high temperature heating equipment

Mar 08, 2024

eLITHE aims to support the electrification of the ceramic industries by demonstrating sustainable and cost-effective pathways to electrify high temperature thermal processes (>1,000ºC) from the ceramic industry. Three different processes will be demonstrated at 3 different pilot sites at relevant scale:
1. A ceramic frits smelter (1,100-1,500ºC) combining induction and resistive heating through electrodes.
2. A microwave-based calcination furnace (1,200ºC) for the calcination of alumina.
3. A tunnel kiln (1,100ºC) combining radiant walls and flexible hybrid burners for bricks and tiles firing.
These technologies will be endorsed through the application of advanced modelling techniques to develop Digital Twins (DTs) of each of them, as a core tool to support design and operation. eLITHE will also involve material science to develop novel products and refractory materials compositions adapted to the new requirements of electrified processes and will test waste materials derived from the ceramic industry for high temperature energy storage applications, improving the sector circularity.