Skip to main content
To KTH's start page

MERiT+ — Methane in Rocket nozzle cooling channels - conjugate heat Transfer measurements

For future rocket propulsion systems it is of strategic importance to develop knowledge of the heat transfer characteristics and material influence at relevant operating conditions. This project will investigate, for different relevant nickel-alloys and typical channel geometries, hydrocarbon fuels and operating conditions to determine: heat transfer coefficient (HTC), degree of coking and corrosion in the cooling channel, pressure loss as a function of supplied heat load, wall temperature, Reynolds number, fuel composition and pressure level.

Funded by:

SNSA (Swedish National Space Agency)

Time period:

20160901 – 20270331

Project partners:

GKN Aerospace Sweden

European Space Agency

Background

Quantitative information on the heat transfer characteristics for nickel-alloy steels under influence of hydrocarbon fuels at high pressure and temperature, as for the cooling of rocket nozzles, is to a high degree unavailable in the open literature. In order to maintain and gain new market shares in future rocket propulsion systems it is of strategic importance that the industry and academia develop necessary knowledge of the heat transfer characteristics and material influence at relevant operating conditions.

Aim and objectives

The objectives with the investigations are, for different relevant nickel-alloys and typical channel geometries, hydrocarbon fuels and operating conditions to determine:

  • heat transfer coefficient (HTC)
  • degree of coking and corrosion in the cooling channel
  • pressure loss as a function of supplied heat load, wall temperature, Reynolds number, fuel composition and pressure level.

Publications

On the characterization of methane in rocket nozzle cooling channels

Contact people

Project leader

Researchers

Mauricio Gutierrez Salas
Mauricio Gutierrez Salas researcher maugut@kth.se Profile

Technicians

ALT-BESS — Aging Models, LCA, and Advanced Tools for Stationary Energy Storage: Enhancing Battery Technologies and Supporting Global Decarbonization
A turnkey solution for Swedish buildings through integrated PV electricity and energy storage (PV-ESS)
CARE – Cavity Acoustics and Rossiter modEs
Circular Techno-Economic Analysis of Energy Storage– IEA Annex Co-coordination
COMHPTES — Flexible Compact Modular Heat Pump and PCM based Thermal Energy Storage System for heat and cold industrial applications
DARLING — Damaged and Repaired Blade Modeling with in-situ Experiments
DETECTIVE – Development of a Novel Tube-Bundle-Cavity Linear Receiver for CSP Applications
Digital Twin for smart grid connected buildings
eLITHE – Electrification of ceramic industries high temperature heating equipment
FLEXnCONFU: Flexiblize Combined Cycle Power Plants through Power To-X Solutions using Non-Conventional Fuels
FLUWS — Flexible Upcycled Waste Material based Sensible Thermal Energy Storage for CSP
FRONTSH1P — A FRONTrunner approach to Systemic circular, Holistic & Inclusive solutions for a New Paradigm of territorial circular economy
HP4NAR — Next generation Heat Pumps with NAtural Refrigerants for district heating and cooling systems
HECTAPUS — Heating Cooling Transition and Acceleration with Phase Change Energy Utilization Storage
HYBRIDplus – Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles
I-UPS — Innovative High Temperature Heat Pump for Flexible Industrial Systems
JOULIA — Electrification of industrial processes using induction and microwaves technologies
LCA-SESS — A new standard methodology for assessing the environmental impact of stationary energy storage systems
MERiT+ — Methane in Rocket nozzle cooling channels - conjugate heat Transfer measurements
Optimization of Molten Salt Electric Heaters
PED StepWise — Participatory Step-by-Step Implementation Process for Zero Carbon District Concepts in Existing Neighbourhoods
POWDER2POWER (P2P) — MW-scale fluidized particle-driven CSP prototype demonstration
RECOPS — Resilience and cost benefits of open-source software in the power sector
Recycling of end-of-life wind blades through renewable energy driven molten salt pyrolysis process
RIHOND – Renewable Industrial Heat On Demand
SCO2OP-TES – sCO2 Operating Pumped Thermal Energy Storage for grid/industry cooperation
SHARP-SCO2 – Solar Hybrid Air-sCO2 Power Plants
STAMPE – Space Turbines Additive Manufacturing Performance Evaluation
SUSHEAT — Smart Integration of Waste and Renewable Energy for Sustainable Heat Upgrade in the Industry
USES4HEAT – Underground Large Scale Seasonal Energy Storage for Decarbonized and Reliable Heat
UP-FLEXH — Innovative High Temperature Heat Pump for Flexible Industrial Heat on Demand
VILD — Virtual Integrated soLutions for future Demonstrators and products